Digital touch perception for teaching visual impairment people
Keywords:
Cognitive appreciation, visually impaired people, virtual reality systems, tactile perceptionAbstract
The cognitive perception of scenes or objects of large or very small size, such as the architecture of a building or the anatomy of a cell, is based mainly on the visual appreciation of the scene or object through photographs, computer images, or the physical presence. However, in the case of visually impaired people, visual appreciation cannot be used, so the cognitive process is based on auditory and tactile appreciation. Nevertheless, tactile appreciation is practically impossible when dealing with very small or extremely large objects or scenes.
In this work, the use of the tactile appreciation by computer, also known as digital touch or virtual touch, is proposed as an educational communication strategy for people with visual disabilities. Digital tactile appreciation is achieved with haptic systems, which add the sense of touch to the human-computer interaction, allowing the user to touch or feel virtual scenes or objects. The results obtained show that participants with visual disabilities can learn to identify objects using digital touch by computer.
Downloads
References
Baumgartner, E., Christiane, B., Wiebel, C. B. & Gegenfurtner, K. R. (2015). A comparison of haptic material perception in blind and sighted individuals. Vision Research 115, 238–245.
Darrah, M. A. (2013). Computer haptics: A new way of increasing access and understanding of math and science for students who are blind and visually impaired. Journal of Blindness Innovation and Research, 3(2), 3-47. http://dx.doi.org/10.5241/3-47
Espinosa-Castañeda, R. & Medellín-Castillo, H. I. (2014). Análisis y evaluación de la generación de iconos mentales en personas invidentes a partir de la percepción virtual táctil utilizando realidad virtual y sistemas hápticos. Revista ICONO14. Revista de estudios de comunicación y tecnologías emergentes, 2 (12), 295-317. https://doi.org/10.7195/ri14.v12i2.695
Gomez, J. V. & Sandnes, F. E. (2012). RoboGuideDog: Guiding blind users through physical environments with laser range scanners. Procedia Computer Science, 14, 218–225. https://doi.org/10.1016/j.procs.2012.10.025
Hardwick, A., Furner, S. & Rush, J. (1998). Tactile display of virtual reality from the World Wide Web method for blind people. Displays 18, 153-161. https://doi.org/10.1016/S0141-9382(98)00016-X
Intraub H. (2004) Anticipatory spatial representation of 3D regions explored by sighted observers and a deaf-and-blind-observer. Cognition (94), 19–37.
Intraub, H. (2014). Visual scene representation: A spatial-cognitive perspective. In K. Kveraga & M. Bar (Eds.), Scene vision: Making sense of what we see (pp. 5-26). The MIT Press.
Konstantinos, P., Panagiotis, K., Eleni, K., Marina, M., Asimis, V. & Valari, E. (2015). Audio-Haptic Map: An Orientation and Mobility Aid for Individuals with Blindness. Procedia Computer Science, 67, 223–230. https://doi.org/10.1016/j.procs.2015.09.266
Koukourikos, P. & Papadopoulos, K. (2015). Development of Cognitive Maps by Individuals with Blindness Using a Multisensory Application. Procedia Computer Science, 67, 213–222. https://doi.org/10.1016/j.procs.2015.09.265
Lahav, O. & Mioduser, D. (2008a). Construction of cognitive maps of unknown spaces using a multisensory virtual environment for people who are blind. Computers in Human Behavior, 24(3), 1139–1155. https://doi.org/10.1016/j.chb.2007.04.003
Lahav, O., & Mioduser, D. (2008b). Haptic-feedback support for cognitive mapping of unknown spaces by people who are blind. International Journay of Human-Computer Studies, 66(1), 23–35. https://doi.org/10.1016/j.ijhcs.2007.08.001
Lahav, O., Schloerb, D., Kumar, S. and Srinivasan, M. (2012), "A virtual environment for people who are blind – a usability study", Journal of Assistive Technologies, 6(1), 38-52. https://doi.org/10.1108/17549451211214346
Lahav, O., Hagaba, N., Kadera, S.A.E., Levyb, S.T. & Talis V. (2018) “Listen to the models: Sonified learning models for people who are Blind”. Computers & Education 127, 141–153.
Macchelli, A., Melchiorri, C. & Arduini, D. (2000). Real-time Linux control of haptic interface for visually impared persons. IFAC Proceedings. Robot Control. Vienna, Austria.
Medellín-Castillo, H.I., González-Badillo, G., Govea, E., Espinosa-Castañeda, R. & Gallegos, E. (2015). “Development of Haptic-Enabled Virtual Reality Applications for Engineering, Medicine and Art,” in ASME 2015 International Mechanical Engineering Congress and Exposition. Systems, Design, and Complexity. Houston, Texas, USA, 2015. https://doi.org/10.1115/IMECE2015-52770
Medellín-Castillo, H. I., Zaragoza-Siqueiros, J., Govea-Valladares, E. H., Ritchie, J., Lim, T. and Sivanathan, A. (2020). Chapter 7: Virtual Reality Applications for Computer Aided Design and Advanced Manufacture of Medical Devices. Volume 3: Augmented, Virtual and Mixed Reality Applications in Advanced Manufacturing. Manufacturing in the Era of 4th Industrial Revolution. (pp 179-212) World Scientific Publishing Company. Singapore. https://doi.org/10.1142/9789811222863_0007
Minogue, J. and Jones, M.G. (2006). Haptics in education: Exploring an untapped sensory modality. Review of Educational Research, 76(3), 317-348. https://doi.org/10.3102/00346543076003317
Panëels, S. A., Ritsos, P. D., Rodgers, P. J., & Roberts, J. C. (2013). Prototyping 3D haptic data visualizations. Computers & Graphics, 37(3), 179–192. https://doi.org/10.1016/j.cag.2013.01.009
Sánchez, J. (2012). Development of navigation skills through audio haptic videogaming in learners who are blind. Procedia Computer Science, 14, https://doi.org/10.1016/j.procs.2012.10.012
SEP (2012). Educación pertinente e inclusiva. La discapacidad en educación indígena. Guía-Cuaderno 5: Atención educativa de alumnos y alumnas con discapacidad visual. Secretaría de Educación Pública. México. Disponible en: https://www.educacionespecial.sep.gob.mx/2016/pdf/discapacidad/Documentos/Atencion_educativa/Visual/3Discapacidad_Visual.pdf
Secretaría de Educación Pública (12 de enero de 2022). Planes y programas de estudio. Matemáticas, primaria 5o. https://www.planyprogramasdestudio.sep.gob.mx/prim-ae-pensamiento-mate5.html
West, R. & Turner, L.H. (2004). Teoría de la Comunicación: Análisis y Aplicación. Mc Graw Hill.
Yin, R. K. (2003). Case Study Research: Design and Methods, Applied Social Research Methods Series, 5, 3th ed. Sage Publications.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Prisma Social

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who publish in this journal accept the following terms:
-
Authors retain copyright.
-
Authors transfer to the journal the right of first publication. The journal also owns the publishing rights.
-
All published contents are governed by an Attribution-NoDerivatives 4.0 International License.
Access the informative version and legal text of the license. By virtue of this, third parties are allowed to use what is published as long as they mention the authorship of the work and the first publication in this journal. If you transform the material, you may not distribute the modified work. -
Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (e.g., inclusion in an institutional repository or publication in a book) as long as they clearly indicate that the work was first published in this journal.
- Authors are allowed and recommended to publish their work on the Internet (for example on institutional and personal websites), following the publication of, and referencing the journal, as this could lead to constructive exchanges and a more extensive and quick circulation of published works (see The Effect of Open Access).











