A multi-factor analysis of the quality of life of the elderly people in Europe

Authors

Keywords:

Quality of life; wellness, SHARE survey; CASP-19; supervised and unsupervised algorithms; decision trees; cluster analysis.

Abstract

As it is well known, the increase in life expectancy means that more people reach an age when their physical and mental health can deteriorate. The vulnerability of these people is especially reflected in their health, and in the difficulty to satisfy their vital needs. These facts, along with the development of the welfare state, make it necessary to study the quality of life of these people.

Supervised algorithms have been used on the SHARE survey (the Survey of Health, Aging and Retirement in Europe) to identify the main factors that explain the well-being of people who declare themselves dependent in Europe. The results have been interpreted using Shapley Values.

The main contribution comes from the study of the relationship between health spending and quality of life collected by the CASP-19 indicator. The problem has been approached from a double perspective: qualitative and quantitative. While no relationship can be established between quality of life and European healthcare systems (Beveridge, Bismarck or mixed), the nature of those who provide health services or the degree of centralization, a relationship between the level of public spending on health and the level of perceived well-being has been found.

Downloads

Download data is not yet available.

Author Biographies

Sonia de Paz Cobo, Universidad Rey Juan Carlos

Universidad Rey Juan Carlos. Dpto. Economía Aplicada I

Marina Ortín Fernández, Colegio universitario de estudios financieros

Colegio universitario de estudios financieros

Mayra Goicochea Neyra, Colegio universitario de estudios financieros

Colegio universitario de estudios financieros

References

AI Wiki, (2020). Supervised, Unsupervised, & Reinforcement Learning. https://docs.paperspace.com/machine-learning/wiki/supervised-unsupervised-and-reinforcement-learning

Amat, J. (2016). Kruskal-Wallis test. RPubs. https://rpubs.com/Joaquin_AR/219504

Aranco, N., Stampini, M., Ibarrarán, P. & Medellín, N. (2018). Panorama de envejecimiento y dependencia en América Latina y el Caribe. Banco Interamericano de Desarrollo. IDB-PB-273. https://publications.iadb.org/publications/spanish/document/Panorama-de-envejecimiento-y-dependencia-en-America-Latina-y-el-Caribe.pdf

Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter, F., Schaan, B., Stuck, S. & Zuber, S. (2013). Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). International Journal of Epidemiology. https://doi.org/10.1093/ije/dyt088

Börsch-Supan, A., Bristle, J., Andersen-Ranberg, K., Brugiavini, A., Jusot, F., Litwin, H. & Weber, G. (eds.). (2019). Health and socio-economic status over the life course: First results from SHARE Waves 6 and 7. De Gruyter. https://doi.org/10.1515/9783110617245

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression Trees. Taylor & Francis Group. https://doi.org/10.1201/9781315139470

Carrasco-Campos, A., Martínez, L. C., Moreno, A. (2013). Revisión crítica de la medición del bienestar desde una perspectiva interdisciplinar. Prisma Social. Núm. 11 Pág. 91-122. ttp://www.isdfundacion.org/publicaciones/revista/numeros/11/secciones/tematica/pdf/t-04-medicion-bienestar-91-122.pdf

Casas, P., (2019). A gentle introduction to SHAP values in R (R-bloggers). Disponible en: https://www.r-bloggers.com/a-gentle-introduction-to-shap-values-in-r/.

CASP19. (2020). https://casp19.com/background

Comisión Europea (CE). (2000). Carta de los Derechos Fundamentales de la Unión Europea. https://eur-lex.europa.eu/eli/treaty/char_2016/oj

Comisión Europea (CE). (2010). Tratado de funcionamiento de la Unión Europea. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:12012E/TXT&from=ES

Comisión Europea (CE). (2017). Pilar europeo de derechos sociales. https://www.educacionyfp.gob.es/dam/jcr:914b1a2e-a293-495d-a51d-95006a47f148/EPSR-booklet_es.pdf

Comisión Europea (CE). (2020). https://ec.europa.eu/social/main.jsp?langId=es&catId=1137

Encuesta de Salud, Envejecimiento y Jubilación en Europa (SHARE), (2020). http://www.share-project.org/home0.html

Gaeta, M., Campanella, F., Capasso, L., Schifino, G.M., Gentile, L., Banfi, G., Pelissero, G. & Ricci, C. (2017). An overview of different health indicators used in the European Health Systems. Journal of Preventive Medicine and Hygiene. 58,2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584080/pdf/2421-4248-58-E114.pdf

Han, J., (2020). Distance between Categorical Attributes Ordinal Attributes and Mixed Types. Coursera. https://www.coursera.org/lecture/cluster-analysis/2-4-distance-betweencategorical-attributes-ordinal-attributes-and-mixed-types-KnvRC

Hyde, M., Higgs, P., Wiggins, RD. & Blane, D. (2015). A decade of research using the CASP scale: key findings and future directions. Aging Ment Health, Jul;19(7):571-5. https://doi.org/10.1080/13607863.2015.1018868

Juliá, R. (2016). Validez del indicador general de limitación de la actividad (GALI) para medir funcionamiento en la población. Un análisis comparativo con salud percibida, a través de encuestas de salud de España. Universidad de Alicante. https://rua.ua.es/dspace/bitstream/10045/68918/7/tesis_rocio_julia_sanchis.pdf

Kassambara, A. (2017). Factor Analysis of Mixed Data in R: Essentials. Statistical tools for high-throughput data analysis. http://www.sthda.com/english/articles/31-principal-componentmethods-in-r-practical-guide/115-famd-factor-analysis-of-mixed-data-in-r-essentials/

Molnar, C. (2020). Interpretable Machine Learning: A Guide for Making Black Box Models. Explainable. Bookdown. https://christophm.github.io/interpretable-ml-book/shapley.html

Oficina Europea de Estadística (Eurostat), (2020). Population structure and ageing. https://ec.europa.eu/eurostat/statisetics-explained/index.php?title=Population_structure_and_ageing/es

Orellana, J. (2018). Árboles de decisión y Random Forest. Bookdown. https://bookdown.org/content/2031/arboles-de-decision-parte-i.html

Organización Mundial de la Salud (OMS), (2001). Clasificación Internacional del Funcionamiento, las Discapacidades y la Salud (CIF). https://www.imserso.es/InterPresent2/groups/imserso/documents/binario/435cif.pdf

Organización Mundial de la Salud (OMS), (2018). https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health

Pathak, M. (2018). Feature Selection in R with the Boruta R Package. Datacamp. https://www.datacamp.com/community/tutorials/feature-selection-Rboruta

Progress Consulting S.r.l. & Living Prospects Ltd. (2012). The management of health systems in the EU Member States - The role of local and regional authorities. https://doi.org/ 10.2863/83500

Reusova, A., (2018). Hierarchical Clustering on Categorical Data in R. Towards Data Science. https://towardsdatascience.com/hierarchical-clustering-on-categoricaldata-in-r-a27e578f2995

Rodríguez, V., Rodríguez-Mañas, L., Sancho, M. & Díaz, R. (2012). Envejecimiento. La investigación en España y Europa. Revista Española de Geriatría y Gerontología. 47(4):174–179. https://doi.org/10.1016/j.regg.2012.02.005

Soldi, R. (2017). The management of health systems in the EU Member States. The role of local and regional authorities. European Committee of the Regions. European Union. https://op.europa.eu/en/publication-detail/-/publication/239062df-cb4b-11e7-a5d5-01aa75ed71a1/language-en

Teknomo, K. (2015). Normalized Rank Transformation. Revoledu. https://people.revoledu.com/kardi/tutorial/Similarity/Normalized-Rank.html

Tibshirani, R., Walther, G. & Hastie, T. (2000). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society. https://doi.org/10.1111/1467-9868.00293

Tseng, G. (2018). Interpreting complex models with SHAP values. Medium. https://medium.com/@gabrieltseng/interpreting-complex-models-withshap-values-1c187db6ec83c

AI Wiki, (2020). Supervised, Unsupervised, & Reinforcement Learning. https://docs.paperspace.com/machine-learning/wiki/supervised-unsupervised-and-reinforcement-learning

Amat, J. (2016). Kruskal-Wallis test. RPubs. https://rpubs.com/Joaquin_AR/219504

Aranco, N., Stampini, M., Ibarrarán, P. & Medellín, N. (2018). Panorama de envejecimiento y dependencia en América Latina y el Caribe. Banco Interamericano de Desarrollo. IDB-PB-273. https://publications.iadb.org/publications/spanish/document/Panorama-de-envejecimiento-y-dependencia-en-America-Latina-y-el-Caribe.pdf

Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter, F., Schaan, B., Stuck, S. & Zuber, S. (2013). Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). International Journal of Epidemiology. https://doi.org/10.1093/ije/dyt088

Börsch-Supan, A., Bristle, J., Andersen-Ranberg, K., Brugiavini, A., Jusot, F., Litwin, H. & Weber, G. (eds.). (2019). Health and socio-economic status over the life course: First results from SHARE Waves 6 and 7. De Gruyter. https://doi.org/10.1515/9783110617245

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression Trees. Taylor & Francis Group. https://doi.org/10.1201/9781315139470

Carrasco-Campos, A., Martínez, L. C., Moreno, A. (2013). Revisión crítica de la medición del bienestar desde una perspectiva interdisciplinar. Prisma Social. Núm. 11 Pág. 91-122. ttp://www.isdfundacion.org/publicaciones/revista/numeros/11/secciones/tematica/pdf/t-04-medicion-bienestar-91-122.pdf

Casas, P., (2019). A gentle introduction to SHAP values in R (R-bloggers). Disponible en: https://www.r-bloggers.com/a-gentle-introduction-to-shap-values-in-r/.

CASP19. (2020). https://casp19.com/background

Comisión Europea (CE). (2000). Carta de los Derechos Fundamentales de la Unión Europea. https://eur-lex.europa.eu/eli/treaty/char_2016/oj

Comisión Europea (CE). (2010). Tratado de funcionamiento de la Unión Europea. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:12012E/TXT&from=ES

Comisión Europea (CE). (2017). Pilar europeo de derechos sociales. https://www.educacionyfp.gob.es/dam/jcr:914b1a2e-a293-495d-a51d-95006a47f148/EPSR-booklet_es.pdf

Comisión Europea (CE). (2020). https://ec.europa.eu/social/main.jsp?langId=es&catId=1137

Encuesta de Salud, Envejecimiento y Jubilación en Europa (SHARE), (2020). http://www.share-project.org/home0.html

Gaeta, M., Campanella, F., Capasso, L., Schifino, G.M., Gentile, L., Banfi, G., Pelissero, G. & Ricci, C. (2017). An overview of different health indicators used in the European Health Systems. Journal of Preventive Medicine and Hygiene. 58,2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584080/pdf/2421-4248-58-E114.pdf

Han, J., (2020). Distance between Categorical Attributes Ordinal Attributes and Mixed Types. Coursera. https://www.coursera.org/lecture/cluster-analysis/2-4-distance-betweencategorical-attributes-ordinal-attributes-and-mixed-types-KnvRC

Hyde, M., Higgs, P., Wiggins, RD. & Blane, D. (2015). A decade of research using the CASP scale: key findings and future directions. Aging Ment Health, Jul;19(7):571-5. https://doi.org/10.1080/13607863.2015.1018868

Juliá, R. (2016). Validez del indicador general de limitación de la actividad (GALI) para medir funcionamiento en la población. Un análisis comparativo con salud percibida, a través de encuestas de salud de España. Universidad de Alicante. https://rua.ua.es/dspace/bitstream/10045/68918/7/tesis_rocio_julia_sanchis.pdf

Kassambara, A. (2017). Factor Analysis of Mixed Data in R: Essentials. Statistical tools for high-throughput data analysis. http://www.sthda.com/english/articles/31-principal-componentmethods-in-r-practical-guide/115-famd-factor-analysis-of-mixed-data-in-r-essentials/

Molnar, C. (2020). Interpretable Machine Learning: A Guide for Making Black Box Models. Explainable. Bookdown. https://christophm.github.io/interpretable-ml-book/shapley.html

Oficina Europea de Estadística (Eurostat), (2020). Population structure and ageing. https://ec.europa.eu/eurostat/statisetics-explained/index.php?title=Population_structure_and_ageing/es

Orellana, J. (2018). Árboles de decisión y Random Forest. Bookdown. https://bookdown.org/content/2031/arboles-de-decision-parte-i.html

Organización Mundial de la Salud (OMS), (2001). Clasificación Internacional del Funcionamiento, las Discapacidades y la Salud (CIF). https://www.imserso.es/InterPresent2/groups/imserso/documents/binario/435cif.pdf

Organización Mundial de la Salud (OMS), (2018). https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health

Pathak, M. (2018). Feature Selection in R with the Boruta R Package. Datacamp. https://www.datacamp.com/community/tutorials/feature-selection-Rboruta

Progress Consulting S.r.l. & Living Prospects Ltd. (2012). The management of health systems in the EU Member States - The role of local and regional authorities. https://doi.org/ 10.2863/83500

Reusova, A., (2018). Hierarchical Clustering on Categorical Data in R. Towards Data Science. https://towardsdatascience.com/hierarchical-clustering-on-categoricaldata-in-r-a27e578f2995

Rodríguez, V., Rodríguez-Mañas, L., Sancho, M. & Díaz, R. (2012). Envejecimiento. La investigación en España y Europa. Revista Española de Geriatría y Gerontología. 47(4):174–179. https://doi.org/10.1016/j.regg.2012.02.005

Soldi, R. (2017). The management of health systems in the EU Member States. The role of local and regional authorities. European Committee of the Regions. European Union. https://op.europa.eu/en/publication-detail/-/publication/239062df-cb4b-11e7-a5d5-01aa75ed71a1/language-en

Teknomo, K. (2015). Normalized Rank Transformation. Revoledu. https://people.revoledu.com/kardi/tutorial/Similarity/Normalized-Rank.html

Tibshirani, R., Walther, G. & Hastie, T. (2000). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society. https://doi.org/10.1111/1467-9868.00293

Tseng, G. (2018). Interpreting complex models with SHAP values. Medium. https://medium.com/@gabrieltseng/interpreting-complex-models-withshap-values-1c187db6ec83c

Published

2021-01-29

How to Cite

de Paz Cobo, S., Ortín Fernández, M., & Goicochea Neyra, M. (2021). A multi-factor analysis of the quality of life of the elderly people in Europe. Revista Prisma Social, (32), 93–127. Retrieved from https://revistaprismasocial.es/article/view/4101